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Abstract. An averaged-field approach is suggested for obtaining the explicit form of the
dispersion equation for electromagnetic waves propagating in a three- or two-dimensional dielectric
photonic crystal when the dimension of the inclusions is small compared with the longest period
of the rectangular lattice of the photonic crystal. The band structure is obtained in an explicit and
simple way. The method is verified numerically by comparing with the conventional plane-wave
expansion method for a special case.

1. Introduction

A photonic crystal is a periodic dielectric structure which is used to control and manipulate the
propagation of light [1–4]. Intensive investigations on photonic crystals have been carried out
recently following the discovery of photonic band-gap materials, which is a new and exciting
development in physics. Most of the potential applications of photonic crystals rely on their
band structures of the dispersion curves [5–8]. The band structure of a photonic crystal is
usually computed by the plane-wave expansion method, in which the fields and the dielectric
constant are expanded in infinite series of plane waves and the problem is reduced to an
infinite-dimensional eigenvalue problem [9–13]. Since the plane-wave expansion converges
slowly, a large number of terms in the truncated series are required. Furthermore, such a
numerical method does not provide much physical insight into how the band structure is
formed. In this paper we introduce an analytic method for obtaining the band structure of
a three- or two-dimensional dielectric photonic crystal when the dimension of the inclusions
is small compared with the longest period of the rectangular lattice of the photonic crystal.
This method allows one to obtain an explicit and simple dispersion equation which involves a
dispersion coefficient. This dispersion coefficient can be expressed in terms of the response of
the individual inclusion element to the local field and the response to the field generated by the
whole lattice. Explicit solutions for special cases are useful for the insight they provide and as
references in establishing benchmarks for general numerical algorithms. The analytic method
is verified numerically for a special case (theH -polarization of the two-dimensional case)
by comparing with the conventional plane-wave expansion method. Compared with other
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analytic approaches such as the generalized Rayleigh method [14, 15], the present approach
gives the simplest formulation.

2. The averaged-field approach

Consider a photonic crystal (with a rectangular lattice) as shown in figure 1. The centres of
the inclusion elements form an infinite periodic lattice with periodl along thez-direction and
periodslx , ly along thex- andy-directions, respectively (assume thatl > lx, ly ; i.e., we choose
thez-axis along the direction with the longest period). We view this lattice as a set of grid points
on many parallel planesz = 0,±l,±2l,±3l, . . .. Denote the maximum length of the inclusion
along thez-direction byd. We consider the case when the phase shift of the eigenwave is
small over the distanced (i.e.,kd < 1, wherek is the wavenumber in the medium). We also
assume thatd � l. We define regionn as the region(n−3)l/2+d/2< z < (n−1)l/2−d/2
whenn is odd or the region(n − 2)l/2− d/2 < z < (n − 2)l/2 + d/2 whenn is even (see
figure 1). In regions±1, ±3, ±5, . . ., the medium is homogeneous (the background medium)
with permittivity εb and permeabilityµ and the homogeneous Maxwell’s equations hold in
these regions. The inclusions have permittivityεa and the same permeability as the background
medium. The time dependence of the fields is assumed to be exp(−iωt).

,
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region 1

region 3

region 2

Figure 1. The configuration for a 2D periodic rectangular array of inclusions in a background
material.

Our goal is to derive an explicit dispersion relation for the photonic crystals. Instead
of the dispersion relation for the true electromagnetic fields, the dispersion relation for the
transversely averaged fields (over the region [x− lx/2, x + lx/2]× [y− ly/2, y + ly/2]) will be
considered. A transversely averaged function for a functionf (x, y, z) is defined and denoted
by

〈f 〉(x, y, z) = 1

lx

1

ly

∫ x+lx/2

x−lx/2

∫ y+ly/2

y−ly/2
f (x ′, y ′, z) dx ′ dy ′. (1)

From the linearity of the averaging operator it follows that the same Maxwell’s equations
hold in regions 1, 2, 3,. . . , for the averaged fields [16]. We then take the following spatial
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Fourier transform for these averaged fields in region 1 (−l + d/2 < z < −d/2) and region 3
(d/2< z < l − d/2):

f̂ (k, z) =
∫ +∞

−∞

∫ +∞

−∞
f (x, y, z)eikxx+ikyy dx dy (2)

wherek = (kx, ky). In the conventional theory for photonic crystals one considers the true
fields and obtains the band structure numerically by e.g. a plane-wave expansion method. In
the present paper we consider the averaged fields and obtain an analytic expression for the band
structure. Since the eigenwaves in a photonic crystal are spatial plane harmonics (with periods
lx/m, ly/n andl/p in x-, y- andz-directions, respectively, wherem, n, p are integers) [2], the
operation of averaging (defined by equation (1)) does not change the spatial dependence of the
eigenwaves. The averaged fields have the same expansion in terms of the averaged eigenwaves
for the same wave vector and, hence, the dispersion relation for the averaged fields is the same
as that for the true fields.

From Maxwell’s equations, one obtains the following equations for the Fourier-trans-
formed averaged fields in the homogeneous region 1 (−l + d/2 6 z 6 −d/2) and region 3
(d/26 z 6 l − d/2):

∇× 〈Ê〉 = −iωµ〈Ĥ〉 (3)

∇× 〈Ĥ〉 = iωεb〈Ê〉 (4)

which can be rewritten in the following form:

k × ∂z〈Êt 〉(k, z) = iωµz0k · 〈Ĥt 〉(k, z) (5)

k × ∂z〈Ĥt 〉(k, z) = −iωεbz0k · 〈Êt 〉(k, z) (6)

∂z〈Êz〉(k, z) = ik · 〈Êt 〉 (7)

where the subscriptt refers to the tangential component of the fields, andz0 is the unit vector
along thez-direction. The solutions to these equations can be expressed in the following form
(in both regions 1 and 3):

C(k, z) = −→C (k) exp(i
√
k2

0 − k2z) +
←−
C (k) exp(−i

√
k2

0 − k2z) (8)

whereC(k, z) denotes〈Ĥ〉 or 〈Ê〉 andk0 = ω√εbµ is the wavenumber in the background
medium. The coefficients

−→
C (k),

←−
C (k) in equation (8) are the amplitudes of the two waves

propagating in the positive or negativez-direction.
On the other hand, from the Bloch theorem one knows that〈Ê〉 and〈Ĥ〉 can be written

in the following form [2]:

C(k, z) = −→F (k, z)exp(ikzz) +
←−
F (k, z)exp(−ikzz) (9)

wherekz is thez-axis propagation constant of the periodic photonic crystal (as a medium)
which belongs to the first Brillouin zone (0< kz < π/l), and the functions

−→
F (k, z) and←−

F (k, z) are periodic inz with periodl. This periodicity allows one to express the amplitudes

of the two waves in region 3 (
−→
C
(3)

and
←−
C
(3)

) in terms of the amplitudes of these waves in

region 1 (
−→
C
(1)

and
←−
C
(1)

) as follows:

−→
C
(3)
(k) = −→C (1)

(k)e[i (
√
k2

0−k2−kz)l] ←−
C
(3)
(k) =←−C (1)

(k)e[i (
√
k2

0−k2+kz)l] . (10)

In the conventional theory of photonic crystals there is only one eigenwave
−→
F (k, z)exp(ikzz)

in the representation (9) (see e.g. [2]). However, our approach is quite different. We derive
the jumps in the averaged fields over each inclusion layer (with thicknessd). These jumps
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indicate an ‘averaged’ reflection of the electromagnetic wave from these inclusion layers, and
thus we cannot drop the back-propagation term in equation (8) or equation (9) (one can find
an analogy in the well-known coupled-wave theory [17]). Otherwise, we will obtain a trivial
result

kz =
√
k2

0 − k2.

Since each inclusion layer is quite thin (kd < 1), we may neglect the phase shift of the
electromagnetic field over the spatial interval−d/2 < z < d/2. We consider the inclusion
layer centred at the planez = 0 as a very thin layer of electrical dipole polarization (induced
by the propagating waves). For this inclusion layer we introduce an equivalent averaged
surface polarization〈P 〉(x, y) referred to its central planez = 0. We may also describe the
tangential polarization of this layer in terms of the following effective surface polarization
current (cf. equations (5.2) and (6.87) of [18]):

〈J〉(x, y) = −iω〈Pt 〉(x, y). (11)

The above relation follows from the continuity equation. The same relation holds for the bulk
polarizationpbulk and the bulk polarization currentjbulk [16]. One then has

〈P 〉 ≡ 〈Pt 〉 + z0〈Pz〉 = d〈pbulk〉|[−d/2<z<d/2]. (12)

Over this dipolar layer the averaged transverse fields have the following jumps:

1〈Ht 〉 ≡ z0 × (〈H〉|z=d/2 − 〈H〉|z=−d/2) = −〈J〉 = iω〈Pt 〉 (13)

〈Et 〉|z=d/2 − 〈Et 〉|z=−d/2 = −i
k

εb
〈Pz〉. (14)

Equation (14) follows from the well-known expression for the potential drop in a dipole layer
with thicknessd. Relations (13) and (14) for the averaged fields are true for arbitraryx, y,
and, therefore, also hold for the Fourier-transformed averaged fields.

Since inside the inclusionspbulk = (εa − εb)E, there exists a 3× 3 matrixβ(k) which
relates the Fourier-transformed averaged surface polarization at the planez = 0 and the
Fourier-transformed averaged electric field at the same plane in the following form:

〈P̂ 〉(k) = β(k) · 〈Ê〉(k)|z=0. (15)

Since the inclusion layer is thin, we may write

〈Ê〉|z=0 = 1

2
(〈Ê〉|z=−d/2 + 〈Ê〉|z=+d/2). (16)

From equation (7) one has

∂z〈Êz〉|z=±d/2 = ik · 〈Êt 〉z=±d/2. (17)

Expressing thez-derivative of〈Êz〉 in terms of the fields with equation (9) and using the
periodicity condition (10) for both〈Êz〉 and〈Êt 〉, it follows from equation (17) that

〈Êz〉|z=d/2 + 〈Êz〉|z=−d/2 = k

Kz(b − a)
[
(b〈Êt 〉|z=−d/2 − 〈Êt 〉|z=d/2)(a + 1)

+ (a〈Êt 〉|z=−d/2 − 〈Êt 〉|z=d/2)(b + 1)
]

where

Kz ≡
√
k2

0 − k2
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and

a = ei[Kz(l−d)+kzl] b = e−i[Kz(l−d)−kzl] . (18)

Using the above relation and equation (16) one can eliminate〈Êz〉(k)|z=0 in equation (15) and
obtain the following equation:

〈P̂ 〉(k) = β

2
· (〈Êt 〉|z=−d/2 + 〈Êt 〉|z=+d/2))

+
β

2
·

z0

Kz(b − a)k ·
[
(b〈Êt 〉|z=−d/2 − 〈Êt 〉|z=d/2)(a + 1)

]
+
β

2
·

z0

Kz(b − a)k ·
[
(a〈Êt 〉|z=−d/2 − 〈Êt 〉|z=d/2)(b + 1)

]
. (19)

Substituting the representation (8) for both〈Êt 〉 and〈Ĥ〉 into equations (5) and (6) and
using the periodicity condition (10), one obtains the following relation between tangential
fields atz = ±d/2:

1〈Ĥt 〉 ≡ z0 × (〈Ĥ〉|z=d/2 − 〈Ĥ〉|z=−d/2)
= Kz

ωµ(a − b)
[
(a〈Êt 〉|z=−d/2 − 〈Êt 〉|z=d/2)(b − 1)

+ (b〈Êt 〉|z=−d/2 − 〈Êt 〉|z=d/2)(a − 1)
]

(20)

wherea andb are given by equation (18).
We now have four vector homogeneous equations (13), (14), (19) and (20) for four

unknown vectors〈Êt 〉|z=−d/2, 〈Êt 〉|z=d/2, 〈P̂ 〉 and1〈Ĥt 〉. In order for this homogeneous
system of equations to have a non-trivial solution, the determinant of the coefficient matrix

must vanish, and this gives anexplicit dispersion equation if the susceptibility tensorβ is
known.

In a special case when the inclusions are symmetric, the cross-components ofβ are
identically zero. Thus, equation (19) can be split into the following two equations:

〈P̂t 〉 = βt · (〈Êt 〉|z=−d/2 + 〈Êt 〉|z=+d/2)

2
(21)

〈P̂z〉 = βzz

2Kz(b − a)
[
(b〈Êt 〉|z=−d/2 − 〈Êt 〉|z=d/2)(a + 1)

]
+

βzz

2Kz(b − a)
[
(b〈Êt 〉|z=−d/2 − 〈Êt 〉|z=d/2)(a + 1)

]
(22)

whereβt is the transverse part ofβ, i.e.,

βt ≡ βxxx0x0 + βyyy0y0 + βxyx0y0 + βyxy0x0.

One can then easily eliminate〈P̂ 〉 and1〈Ĥt 〉 from the system of equations (13), (14), (19)
and (20). Substituting equations (20), (21) and (22) into equations (13) and (14), one obtains
the following two relations between the tangential electric fields atz = ±d/2:

S11 · 〈Êt 〉|z=−d/2 + S12 · 〈Êt 〉|z=d/2 = 0 (23)

S21 · 〈Êt 〉|z=−d/2 + S22 · 〈Êt 〉|z=d/2 = 0 (24)
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where

S11 = Kz(eikzl − cos[Kz(l − d)])
ωµ sin[Kz(l − d)] I t +

ωβt

2

S12 = Kz(e−ikzl − cos[Kz(l − d)])
ωµ sin[Kz(l − d)] I t +

ωβt

2

S21 = kkβzz(e
ikzl + cos[Kz(l − d)])

εbKz sin[Kz(l − d)] − I t

S22 = −kkβzz(e
−ikzl + cos[Kz(l − d]))

εbKz sin[Kz(l − d)] + I t

and whereI t is the unit planar dyadic (i.e.,I t = x0x0 +y0y0) and we have used the following
properties:

2ab ± (a + b) = 2eikzl(eikzl ± cos[Kz(l − d)])
2± (a + b) = 2eikzl(e−ikzl ± cos[Kz(l − d)])
b − a = 2ieikzl sin[Kz(l − d)].

The determinant of the coefficient matrix for the system of equations (23) and (24) must
vanish, which gives an explicit dispersion equation for the case of symmetric inclusions if the

susceptibility tensorβ is known.

Thus the remaining problem is to determine the susceptibility matrixβ, which depends
on the shape of the inclusions. This is considered in the next section.

3. Determination of the susceptibility matrix β(k)

In this section we describe an approach for the determination of the dyadicβ(k), which
relates the Fourier-transformed averaged electric field and the Fourier-transformed averaged
polarization density on the planez = 0 (cf. the definition (15)).

Assume that the inclusion layer in region 2 is excited by a plane waveEext which has the
following x, y-dependence on the planez = 0:

Eext (x, y) = Eext (0, 0)ei(kxx+kyy). (25)

Here the external fieldEext is produced by all sources but the reference inclusion layer. It
includes the field produced by all the other inclusion layers. The averaged surface polarization
〈P 〉(x, y) can be expressed in terms of the total averaged field〈E〉(x, y) on the planez = 0.
In particular, one has the following relation at the origin:

〈P 〉(0) = β ′(kx) · 〈E〉(0, 0). (26)

It can be shown easily thatβ ′(kx) in the above relation is identical toβ(kx) in equation (15).
The periodicity of the grid then leads to the following expression for the dipole momentp

(per unit length) of the(n,m)-numbered cylinder (centred at the pointx = nlx, y = mly, z =
0) on the planez = 0:

p(x = nlx, y = mly) = p(0, 0)e−i(kx lxn+ky lym) (27)

where the 0-numbered cylinder is centred at the origin (i.e.,x = y = z = 0). Note that the
fields considered later are either at the origin or on the planez = 0, unless specified otherwise.
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Consider the doubly periodic grid excited by the wave (25). Assume that the polarizability
α is known for the inclusions, and we have

p(0, 0) = α ·Eloc(0, 0) (28)

where the local fieldEloc(0, 0) is the field applied to the reference inclusion (centred at the
origin) from all theother sources. The local fieldEloc can be written in the following two
parts:

Eloc(0, 0) = Eint (0, 0) +Eext (0, 0) (29)

whereEint is called the interaction field, i.e. the field produced at the origin by all the inclusions
except the reference inclusion centred at the origin. We assume that the external field at the
origin is produced by sources far from the reference cylinder, and thus practically equals the
averaged external field at the same point, i.e.,

Eext (0, 0) = 〈Eext 〉(0, 0). (30)

To ensure the validity of the approximation (30) we have already chosen thez-axis to be along
the direction with the longest period (so that the inclusions at other inclusion layers have a
larger distance from the reference cylinder than the neighbouring inclusions at the planez = 0).
The external fieldEext may be written in the following form:

Eext = 〈E〉 − 〈Egrid〉 (31)

where〈E〉 is the total averaged field and〈Egrid〉 is the contribution of all inclusions at the
reference planez = 0 to the averaged field.

Since both the external field and the distribution of the polarization are periodic functions
(cf. equations (25) and (27)), one can express the interaction field in terms of the so-called

interaction tensorA(k) (introduced by Collin in [19] for dipolar lattices):

Eint (0, 0) = A(k) · p(0, 0). (32)

An explicit expression forA(k) in a special case can be found in e.g. [19] (page 784). A
similar relation resulting from the periodicity of the fields can be written for the averaged grid
field:

〈Egrid〉(0, 0) = B(k, lx, ly) · p(0, 0). (33)

We derive the explicit expressions forA andB in a special case in the appendix.

Now assume thatA andB are already known. Substituting equations (29), (31), (32) and
(33) into equation (28) and using the fact that〈P 〉(0, 0) = p(0, 0)/ lxly , one obtains

〈P 〉(0, 0) = 1

lx ly
(I − α · A + α · B)−1 · α · 〈E〉(0, 0) (34)

which gives the following explicit expression for the susceptibility matrixβ(k):

β = 1

lx ly
(I − α · A + α · B)−1 · α (35)

whereI is the unit dyadic.
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4. Numerical verification for a special case:H-polarization of the 2D case

In this section we verify our method numerically for a special case, namely, theH -polarization
of the two-dimensional case. In the two-dimensional model, the inclusions are uniform
along they-direction and all the fields are independent ofy. We consider the case ofH -
polarization, i.e., the magnetic field is perpendicular to thexz-plane (the electric field hasx-
andz-components).

Then the averaging operator and Fourier transformation (2) are redefined to excludely

andky in the definitions (1) and (2). For such a case,β is a 2× 2 matrix which containsxx,
xz, zx andzz elements. The zero determinant of the system of equations (13), (14), (19) and
(20) leads to the following explicit dispersion equation (note thatk0 = ω√εbµ):

Q sin
√
(ω
√
εbµl)2 − (kxl)2 = cos

√
(ω
√
εbµl)2 − (kxl)2 − coskzl (36)

where

Q = −2ik0l
√
µ/εb√

(k0l)2 − (kxl)2
(
M1−

[
(k0l)

2 − (kxl)2
]3/2

k2
0ωµ

M2

)/(
4 +

√
(k0l)2 − (kxl)2

ωεb
M1M2

)
(37)

and whereM1 andM2 are given by

M1 = iω

(
βxx − βxz kx√

k2
0 − k2

x

)
(38)

M2 = −i
kx

εb

(
βzx − βzz kx√

k2
0 − k2

x

)
. (39)

Equations (37), (38) and (39) for the symmetric case whenβzx = βxz = 0 can easily be derived
from the relationS11S22−S12S21 = 0, which follows from equations (23) and (24) (the tensors

Sij become scalar in the 2D case).
Note that the dimensionless dispersion coefficientQ is real when the inclusions are

lossless. Also note that in generalQ depends on the frequency, the dielectric parameters,
the shape of the inclusions and the lattice parameters. The variableskx andkz in the dispersion
relation (36) determine the propagation direction. For normal propagation (i.e.,kx = 0),
equation (36) has a form similar to the well-known dispersion equation for the inductively
loaded transmission line (whereQ is independent of the frequency) [20]. It is also similar to
the approximate dispersion relation for electron propagation in an ‘empty lattice’ when the
electron energy exceeds the periodic potential barriers [21].

The matrixβ depends on the shape of the inclusions. One can derive explicit expressions

for β for inclusions with various special shapes. For inclusions of circular cylinders (with

radiusa = d/2 and permittivityεa), one can obtain the following explicit expression forβ
(see the appendix for a detailed derivation):

βxx = 2πa2εb

lx(1− δ)
εa − εb
εa + εb

(40)

βzz = 2πa2εb

lx(1− δ′)
εa − εb
εa + εb

(41)

βxz = βzx = 0 (42)
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where

δ = π(ω
√
εbµa)

2

ω
√
εbµlx

εa − εb
εa + εb

[
Y1(ω
√
εbµlx) sin(kxlx) + k2

xlx/(ω
√
εbµ)

]
(43)

δ′ = πa

2lx

εa − εb
εa + εb

(44)

and whereY1 is the Neumann function of order 1. As shown in the appendix, the explicit
expressions (40) and (41) forβxx and βzz are quite accurate whenk0 < 2π/lx , and the
dispersion relation for the complementary casek0 > 2π/lx can be described approximately as
that for the homogeneous background medium. Note that the photonic band gap usually occurs
at several low bands, and thus the explicit formulae for the band structure in the low-frequency
regionk0 < 2π/lx are particularly interesting and useful. It thus follows from equations (38),
(39), (37)−(42) that the dispersion coefficientQ for the casek0 < 2π/lx has the following
expression for circular inclusions:

Q = glx(ω
√
εbµl)

2

l
√
(ω
√
εbµl)2 − (kxl)2

(1− δ′)− (1− δ)(kxl)2[(ω
√
εbµl)

2 − (kxl)2]/(ω
√
εbµl)

4

(1− δ)(1− δ′) + (kxlx)2g

(45)

where

g = πa2(εa − εb)
l2x(εa + εb)

.

4.1. Numerical verification

In order to verify the analytic results obtained from our averaged-field approach, we compare
the band structure obtained with our explicit formulae with the one computed by the
conventional plane-wave expansion method [9]. As a simple numerical example, we choose
εa = 100ε0, εb = ε0, lx/ l = 0.15 and the radiusa = 0.25lx for the circular cylinders. In this
case the irreducible Brillouin zone is a triangular wedge, and the rest of the Brillouin zone can be
related to this triangular wedge by rotational symmetry. Therefore, we have three special points,
0, X and M corresponding respectively tok‖ = 0,k‖ = (π/l)ẑ andk‖ = (π/l)ẑ + (π/lx)x̂.
In figures 2(a) and 2(b), the solid curves are the band structure obtained by the conventional
plane-wave expansion method [9] (with 441 plane waves), and the circles are obtained from our
explicit dispersion relation (36) withQ given by the approximation (45). As one can see from
figure 2(a), our results give a good agreement with the results obtained by the conventional
plane-wave expansion method. The dashed curves in figure 2(b) give the corresponding band
structure (for a normal propagation) for the homogeneous background medium (i.e. there
is no inclusion). Figure 2(b) indicates that our method has taken into account the inclusion
information in a correct way. The comparison given in figures 2(a) and 2(b) verifies the present
method. Our method is over 70 times faster than the plane-wave expansion method in terms
of the required computational time.

5. Conclusions

An averaged-field approach has been suggested for obtaining the band structure of a photonic
crystal when the dimension of the inclusions is small compared with the longest period of the
rectangular lattice. The method allows one to obtain an explicit dispersion equation for a three-
or two-dimensional photonic crystal. The band structure is obtained in an explicit and simple
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Figure 2. The band structure for a 2D photonic crystal withεa = 100ε0, εb = ε0, lx/ l = 0.15 and
radiusa = 0.25lx for the circular cylinders. The circles are obtained by our results, and the solid
curves are obtained by the conventional plane-wave expansion method (with 289 plane waves).
The dashed lines in (b) give the corresponding band structure (for a normal propagation) for the
homogeneous background medium (i.e. there is no inclusion).

way. The method has been verified numerically by comparing with the conventional plane-
wave expansion method for theH -polarization of the two-dimensional case. The present
method can be generalized to the more complicated cases such as the case of anisotropic
inclusions, etc.

Besides the resulting simple and explicit formulae, the present method has many other
advantages such as that it can treat the case when the inclusions are perfectly conducting
(results are presented in [25]). However, the conventional plane-wave expansion method will
be complicated to apply to this case. Note that all the formulae in the present paper also hold
when the permittivity of the inclusions is frequency dependent (as long as the permittivity is
positive) and the band structure can be computed from our explicit dispersion relation in a
straightforward way (the plane-wave expansion method, however, works only for some very
special types of frequency dependence after complicated modifications [22]).
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Appendix. Derivation for β for the case when the inclusions are circular cylinders

The off-diagonal elements of the matrixβ vanish if the cross-section of the centre cylinder
is symmetric with respect to the planez = 0 and each inclusion cylinder is treated as a line
dipole with the dipole moment per unit length denoted byp.

For circular inclusions (with radiusa), one has the following relation betweenp(0) and
the local fieldEloc [23]:

p(0) = 2πa2εb
εa − εb
εa + εb

Eloc. (A1)

Thus, the polarization coefficientα (defined by equation (28)) is given by

α = 2πa2εb
εa − εb
εa + εb

. (A2)

In the two-dimensional case, equation (34) reduces to the following relation (note that
〈Px,z〉(0) = px,z(0)/ lx):

〈Px,z〉 = α

lx(1− αAx,z + αBx,z)
〈Ex,z〉. (A3)

Therefore, one has (cf. equation (15))

βxx = α

lx [1− α(Ax − Bx)] (A4)

βzz = α

lx [1− α(Az − Bz)] . (A5)

To find the expressions forAx,z andBx,z, we consider separately the low-frequency case
k0 < 2π/lx and the high-frequency casek0 > 2π/lx , and we start with the former.

To find the expressions forAx andBx , we consider an array of discrete equivalent dipoles
(polarized in thex-direction) located at the centres of the cylinder inclusions. Thus, the
parameterAx can be found from the following relation [24]:

Eintx ≡ Axpx(0) =
( −1∑
n=−∞

+
∞∑
n=1

)
G(nlx, 0)px(0)e

ikxnlx (A6)

whereG(x, z) is Green’s function describing the electric field at the origin generated by a unit
line dipolar at the point(x, z). On the planez = 0 one has [24]

G(x, 0) = −i

4εb

H
(1)
1 (k0|x|)
|x| . (A7)

We replace the summation in equation (A6) by an integration (as an approximation) using the
well-known Euler formula whenk0 < 2π/lx . One then obtains

Eintx =
px(0)

lx

(∫ −lx/2
−∞

+
∫ ∞
lx/2

)
G(x, 0)eikxx dx. (A8)

We consider the interaction field to be the field produced by a continuous polarization
distribution in the regionsx > lx/2 andx < −lx/2, and this polarization〈P smoothx 〉(x) is
given by

〈P smoothx 〉(x) = px(0)eikxx/ lx. (A9)
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Note that the exact expression for the averaged polarization〈Px〉 is 〈Px〉(x) = px(0)eikxnlx / lx ,
wherex ∈ [(n− 1/2)lx, (n + 1/2)lx ] andn = 0,±1,±2, . . .. Relation (A9) comes from the
smoothing of this exact expression. The functionG(x, 0) can be expressed in terms of the
secondz-derivative ofH(1)

0 (k0R) at z = 0:

G(x, 0) = −i

4k0εb

∂2

∂z2
H
(1)
0 (k0R)

∣∣∣∣
z=0

.

Since the Hankel functionH(1)
0 (k0R) satisfies the Helmholtz equation, it then follows from

equation (A8) that

Eintx =
ipx(0)

4εbk0lx

(
k2

0 +
∂2

∂x2

)∣∣∣∣
x=0

(∫ −lx/2
−∞

+
∫ ∞
lx/2

)
eikxx ′H

(1)
0 (k0|x − x ′|) dx ′. (A10)

Using integration by parts, one can derive the following explicit expression forAx from
equation (A10):

Ax =
√
µ/εb

2lx

 k0√
k2

0 − k2
x

+ Y1(k0lx) sin(kxlx) + k2
xlx/k0

 (A11)

whereYn is the Neumann function of ordern.
In a similar way we can derive the expression for the parameterBx in the low-frequency

case whenk0 < 2π/lx . We use the theorem proved in [16] that the averaged field generated
by discrete dipoles is equal to the field generated by the averaged dipole distribution, i.e.,
〈E〉(P ) = E(〈P 〉). Instead of the exact representation for〈P 〉, we use its smoothed approx-
imation (A9). Using the well-known formula for the electric field produced by an infinite sheet
of harmonic dipole polarization (see e.g. [23] and [24]), one obtains

Bx = ωµ

2lx
√
k2

0 − k2
x

. (A12)

Thus, substituting equations (A11) and (A12) into equation (A4), one obtains the final
expression (40) forβxx with δ given by equation (43).

Now we derive the expressions forAz andBz. We consider an array of discrete equivalent
dipoles (polarized in thez-direction) located at the centres of the cylinder inclusions. We study
the interaction fieldEintz and the averaged grid field〈Egridz 〉 at the origin in a way similar to
the one used in the derivation forAx andBx . Using the corresponding relation (11) for the
bulk polarization and the bulk current density, equations (39a), (39b) in [24] and the formula
〈pbulkz 〉 = 〈Pz〉/d, one obtains the following expression for the field increment dEz at the
origin produced by the polarization current on a small strip element dx on the planez = 0 (a
distance|x| away from the origin):

dEz = i
√
µ/εbω

4d
(pz(0)/ lx)e

ikxxH
(1)
1 (k0|x|) dx. (A13)

Integrating the above dEz, one obtains

Eintz ≡ Azlx〈Pz〉(0) =
(∫ −lx/2
−∞

+
∫ ∞
lx/2

)
dEz. (A14)

To find the averaged grid field〈Egridz 〉, we cannot integrate (A13) over allx on the planez = 0,
since this representation implies that the bulk polarization distribution has a delta-functionδ(z)

form and equation (A13) cannot be used to describe the field in az-polarized strip generated by
itself [24]. Thus we separate the planez = 0 (with a smoothed surface polarization〈Pz〉(x))
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into two regions, namely, the closest region|x| < x0 and the far region|x| > x0 (we choose
the valuex0 such that 2a 6 x0 < lx/2 andk0x0 6 1). When evaluating the contribution from
the region|x| < x0 to 〈Egridz 〉, denoted by〈Eclosestz 〉, we may neglect the phase shift of the
waves and hence it behaves like a static field. Sincex0 > 2a, the two domainsx > x0 and
x < −x0 are far enough away from the origin and we can assume that the field is generated by
a delta-polarization〈pbulkz 〉(x, z) = 〈Pz〉(x)δ(z)/d. It then follows from equation (A13) that

〈Egridz 〉 ≡ Bzlx〈Pz〉(0) = 〈Eclosestz 〉 +
(∫ −x0

−∞
+
∫ ∞
x0

)
dEz. (A15)

The field〈Eclosestz 〉 is the electrostatic field on the dipole layer which is infinite along they-axis
and has a finite size 2x0×d on thexz-plane. This field (due to the effect of bound charges) can be
treated as the field inside an equivalent capacitor with the surface chargeσ = 〈pbulk〉 = 〈Pz〉/d.
This equivalent capacitor is formed by two infinite strips with the same transverse size. We
suggest choosingx0 = d. It then follows that〈Eclosestz 〉 = 〈pbulkz 〉/2εb = 〈Pz〉/2εbd. For the
integral term in equation (A15), the contribution from the partsx > lx/2 andx < −lx/2 to
Bz cancels out withAz (given by equation (A14)). It thus follows from equation (A13) that

Az − Bz = 1

2dlxεb
− i
√
µ/εbω

2l2x

∫ lx/2

d

cos(kxx)H
(1)
1 (k0x) dx. (A16)

An analytic estimation shows that the integral term in the above equation is very small compared
to the first term. Thus one has the following approximation:

Az − Bz = 1

4alxεb
. (A17)

Substituting the above expression into equation (A5), one obtains the expression (41) forβzz
with δ′ given by equation (44).

Now consider the high-frequency case, i.e.k0 > 2π/lx . Then all the cylinders are situated
more than half a wavelength away from the reference cylinder. The averaged field at the origin
generated by then-numbered cylinder (n 6= 0) on the planez = 0 is approximately equal to
the field at the origin generated by this cylinder, i.e.,

〈Enx,z〉|x=0 = Enx,z|x=0.

Since

〈Egridx,z 〉|x=0 =
∞∑

n=−∞
〈Enx,z〉

∣∣∣∣
x=0

it follows from equations (32) and (33) that

Bx,z − Ax,z = 1

px,z(0)

∫ −lx/2
−lx/2

E0
x,z(x) dx

whereE0(x) is the field at the point(x, z = 0) generated by the reference (i.e., 0-numbered)
cylinder. This field cannot be treated as the field generated by a line dipole source, since we
have to take in account the near-field structure in the closest region. The expression for the
field generated by a uniformly polarized cylinder with a finite cross-section is given in [24].
Using the exact expression forE0(x) we have carried out a quite complicated study forβxx
andβzz for the high frequency casek0 > 2π/lx . However, our study leads to the trivial
result corresponding to the homogeneous background medium. If the frequency is so high
that k0lx > 2π andk0a < 1 (the condition required for the present ‘thin-layer’ treatment),
the polarized cylinders give an insignificant scattered field. The dispersion curves calculated
with our complicated high-frequency formulae for this case give an almost linear frequency
dependence of the propagation constant (as for the homogeneous background medium).
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