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Abstract. An averaged-field approach is suggested for obtaining the explicit form of the
dispersion equation for electromagnetic waves propagating in a three- or two-dimensional dielectric
photonic crystal when the dimension of the inclusions is small compared with the longest period
of the rectangular lattice of the photonic crystal. The band structure is obtained in an explicit and
simple way. The method is verified numerically by comparing with the conventional plane-wave
expansion method for a special case.

1. Introduction

A photonic crystal is a periodic dielectric structure which is used to control and manipulate the
propagation of light [1-4]. Intensive investigations on photonic crystals have been carried out
recently following the discovery of photonic band-gap materials, which is a new and exciting
development in physics. Most of the potential applications of photonic crystals rely on their
band structures of the dispersion curves [5-8]. The band structure of a photonic crystal is
usually computed by the plane-wave expansion method, in which the fields and the dielectric
constant are expanded in infinite series of plane waves and the problem is reduced to an
infinite-dimensional eigenvalue problem [9-13]. Since the plane-wave expansion converges
slowly, a large number of terms in the truncated series are required. Furthermore, such a
numerical method does not provide much physical insight into how the band structure is
formed. In this paper we introduce an analytic method for obtaining the band structure of
a three- or two-dimensional dielectric photonic crystal when the dimension of the inclusions
is small compared with the longest period of the rectangular lattice of the photonic crystal.
This method allows one to obtain an explicit and simple dispersion equation which involves a
dispersion coefficient. This dispersion coefficient can be expressed in terms of the response of
the individual inclusion element to the local field and the response to the field generated by the
whole lattice. Explicit solutions for special cases are useful for the insight they provide and as
references in establishing benchmarks for general numerical algorithms. The analytic method
is verified numerically for a special case (thepolarization of the two-dimensional case)

by comparing with the conventional plane-wave expansion method. Compared with other
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analytic approaches such as the generalized Rayleigh method [14, 15], the present approach
gives the simplest formulation.

2. The averaged-field approach

Consider a photonic crystal (with a rectangular lattice) as shown in figure 1. The centres of
the inclusion elements form an infinite periodic lattice with pefiatbng thez-direction and
periodd,, I, along thex- andy-directions, respectively (assume that [,, [,; i.e., we choose
thez-axis along the direction with the longest period). We view this lattice as a set of grid points
onmany parallel planes= 0, &/, £2/, £3], .. .. Denote the maximum length of the inclusion
along thez-direction byd. We consider the case when the phase shift of the eigenwave is
small over the distancé (i.e., kd < 1, wherek is the wavenumber in the medium). We also
assume that <« [. We define region as the regiotin — 3)//2+d/2 < z < (n—1)I/2—-d /2
whenn is odd or the regiorin — 2)[/2 —d/2 < 7 < (n — 2)I/2 +d /2 whenn is even (see
figure 1). Inregionstl, £3, £5, ..., the medium is homogeneous (the background medium)
with permittivity ¢, and permeability. and the homogeneous Maxwell's equations hold in
these regions. The inclusions have permitti¢jtand the same permeability as the background
medium. The time dependence of the fields is assumed to bie-&xp).

' Z

region 3

C{ regiop 2

region 1

Figure 1. The configuration for a 2D periodic rectangular array of inclusions in a background
material.

Our goal is to derive an explicit dispersion relation for the photonic crystals. Instead
of the dispersion relation for the true electromagnetic fields, the dispersion relation for the
transversely averaged fields (over the regior [ /2, x +1, /2] x [y — 1, /2, y +1,/2]) will be
considered. A transversely averaged function for a funcfion y, z) is defined and denoted
by

11 X+l /2 py+l, /2
L1y

(Hx,y,2) =— f&x',y, z)dx’ dy'. (1)

x—l,/2 Jy—1,/2

From the linearity of the averaging operator it follows that the same Maxwell’s equations
hold in regions 1, 2, 3,.., for the aeraged fields [16]. We then take the following spatial
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Fourier transform for these averaged fields in regior-1€ d/2 < 7 < —d/2) and region 3
d/2<z<1-4d/2):

fk,2) = / / fx,y, 2Ry dx dy 2)

wherek = (k,, k). In the conventional theory for photonic crystals one considers the true
fields and obtains the band structure numerically by e.g. a plane-wave expansion method. In
the present paper we consider the averaged fields and obtain an analytic expression for the band
structure. Since the eigenwaves in a photonic crystal are spatial plane harmonics (with periods
ly/m,l,/n andl/p in x-, y- andz-directions, respectively, where, n, p are integers) [2], the
operation of averaging (defined by equation (1)) does not change the spatial dependence of the
eigenwaves. The averaged fields have the same expansion in terms of the averaged eigenwaves
for the same wave vector and, hence, the dispersion relation for the averaged fields is the same
as that for the true fields.

From Maxwell's equations, one obtains the following equations for the Fourier-trans-
formed averaged fields in the homogeneous regiorilHd/2 < z < —d/2) and region 3
(d/2<z<1—d)2):

V x (E) = —iow(H) ®3)

V x (H) = iwe, (E) @)
which can be rewritten in the following form:

k x 3. (E,)(k, 2) = iopzok - (H,)(k, 2) (5)

k x 3. (H,)(k, z) = —iwepzok - (E,) (K, 2) (6)

O AE) (k,2) = ik - (E,) ©)

where the subscriptrefers to the tangential component of the fields, agid the unit vector
along thez-direction. The solutions to these equations can be expressed in the following form
(in both regions 1 and 3):

C(k.z) = C (k) exp(i\/k% — k%2) + T (k) exp(—i,/kZ — k?2) 8)

whereC (k, z) denotes H) or (E) andkg = w. /ey is the wavenumber in the background
medium. The coeﬁicientﬁ(k), ﬁ(k:) in equation (8) are the amplitudes of the two waves
propagating in the positive or negatiyalirection.
On the other hand, from the Bloch theorem one knows tBatand (H) can be written
in the following form [2]:
C(k.7) = F (k. ) exp(ik.z) + F (k. z) exp(—ik.2) )

wherek, is the z-axis propagation constant of the periodic photonic crystal (as a medium)
which belongs to the first Brillouin zone (& k, < w/l), and the functionf(k, z) and
?(k:, z) are periodic i with period!. This periodicity allows one to express the amplitudes

. . 3 3), . . .
of the two waves in region 3 © and ﬁ( )) in terms of the amplitudes of these waves in
. 1 1
region 1 (8( : and 5( )) as follows:

%) = TV d VR T k) = T ()i VBRI, (10)

In the conventional theory of photonic crystals there is only one eigen@\ke z) exp(ik,z)
in the representation (9) (see e.g. [2]). However, our approach is quite different. We derive
the jumps in the averaged fields over each inclusion layer (with thickiles§hese jumps
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indicate an ‘averaged’ reflection of the electromagnetic wave from these inclusion layers, and
thus we cannot drop the back-propagation term in equation (8) or equation (9) (one can find
an analogy in the well-known coupled-wave theory [17]). Otherwise, we will obtain a trivial

result
k, = ,/kg — k2

Since each inclusion layer is quite thikd( < 1), we may neglect the phase shift of the
electromagnetic field over the spatial interval /2 < z < d/2. We consider the inclusion
layer centred at the plane= 0 as a very thin layer of electrical dipole polarization (induced
by the propagating waves). For this inclusion layer we introduce an equivalent averaged
surface polarizationP)(x, y) referred to its central plane= 0. We may also describe the
tangential polarization of this layer in terms of the following effective surface polarization
current (cf. equations (5.2) and (6.87) of [18]):

(D) (x,y) = —io(P)(x, y). (11)

The above relation follows from the continuity equation. The same relation holds for the bulk
polarizationp,,;; and the bulk polarization curreit,;; [16]. One then has

(P) = (P) + 20(P;) = d(Pouir) |[-d/2<z<d/2)- (12)
Over this dipolar layer the averaged transverse fields have the following jumps:
A(H;) = 20 X (H)|z=a/2 — (H) |:=—aj2) = —(J) = io(P;) (13)
.k
(E)z=dj2 — {Ei)i=—da2 = —|;(Pz)- (14)

Equation (14) follows from the well-known expression for the potential drop in a dipole layer
with thicknessd. Relations (13) and (14) for the averaged fields are true for arbitrayy
and, therefore, also hold for the Fourier-transformed averaged fields.

Since inside the inclusions,.;x = (e, — €,) E, there exists a % 3 matrix 8(k) which
relates the Fourier-transformed averaged surface polarization at the plan® and the
Fourier-transformed averaged electric field at the same plane in the following form:

(P)(k) = B(K) - (E)(k)|.=0. (15)
Since the inclusion layer is thin, we may write

A 1 . A
(E)|:=0 = E((E)Iz}d/z +(E)|:=+a/2)- (16)
From equation (7) one has
8Z(Ez>|z=:l:d/2 =ik (E}) a2 (17)

Expressing the-derivative of(éz)Ain terms of the fields with equation (9) and using the
periodicity condition (10) for botRE.) and(E,), it follows from equation (17) that

(Eo)lemira +AE:)e=ayo = (OB e = (B ma)a + D)

K. (b—a)
+ @B =a2 = (B)eap) (b + 1)

K. =/ki—k?

where
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and
a = elK:(U=dr+k]] b = g ilK(=d)—kI] (18)

Using the above relation and equation (16) one can elimiffatek)|._o in equation (15) and
obtain the following equation:

(P)(k) = g B a2+ (B):=+d/2))
b Ko [OBeae = (B)lma+ D
ik (@B = B+ D). (19)

Substituting the representation (8) for ba#,) and (H) into equations (5) and (6) and
using the periodicity condition (10), one obtains the following relation between tangential
fields atz = £d/2:

ACH,) = 20 X (H)|izaj2 — (H)le=—a/2)

= ot Ty @B ea2 — B0 = D
+ OB =a2 — (B)lmap)a = 1) (20)

wherea andb are given by equation (18).

We now have four vector homogeneous equations (13), (14), (19) and (20) for four
unknown vectorS E,)|.— a2, (E:)l.=a/2, (P) and A(H,). In order for this homogeneous
system of equations to have a non-trivial solution, the determinant of the coefficient matrix
must vanish, and this gives axplicit dispersion equation if the susceptibility tengbiis
known. .

In a special case when the inclusions are symmetric, the cross-componghtaref
identically zero. Thus, equation (19) can be split into the following two equations:

_ B (B emapp + (B mray)

(P) : (21)
(B = 5o () o — (Bleap)(a+ D]
z ZKZ(b — a) t)z=—d/2 t)z=d/2
,311 o o
* ok o OB =iz~ Bz} + D] (22)

Wheregt is the transverse part Ef ie.,

B, = Bux®oTo + Byyyoyo + PryToyo * ByxYoTo.

One can then easily eliminat®) and A (H,) from the system of equations (13), (14), (19)
and (20). Substituting equations (20), (21) and (22) into equations (13) and (14), one obtains
the following two relations between the tangential electric fields=at+d /2:

S11 - (E) =g/ + S12+ (E)|=aj2 = 0 (23)
So1 - <Et>|z:—d/2 +Sp;- (Ez>|z:d/2 =0 (24)
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where
= _ K84 —coslk.( — )= wp,
U T ousink .0 —a)] ' 2

= _ K™ —cosK.( —d)D= _ vB,
BT eusink.(—d) 12

5, _ kKB (€t cosK.(—d) 5
AT T K snK.(—a]

S _kkﬁzz(e—”‘rl +coslK. (I —d])) o7
2= e, K, Sin[K,( — d)] !

and where?, is the unit planar dyadic (i.ei = xoxo + Yoyo) and we have used the following
properties:

2ab + (a +b) = 284/ (&% + cos[K, (I — d)])

2+ (a+b) = 2d5 (e + cosK. (I — d)])

b —a = 2ie*! sin[K.(l — d)].
The determinant of the coefficient matrix for the system of equations (23) and (24) must
vanish, which gives an explicit dispersion equation for the case of symmetric inclusions if the
susceptibility tensop is known.

Thus the remaining problem is to determine the susceptibility mgtr'which depends
on the shape of the inclusions. This is considered in the next section.

3. Determination of the susceptibility matrix E(k)

In this section we describe an approach for the determination of the dgaklic which
relates the Fourier-transformed averaged electric field and the Fourier-transformed averaged
polarization density on the plare= 0 (cf. the definition (15)).

Assume that the inclusion layer in region 2 is excited by a plane \&¥ewhich has the
following x, y-dependence on the plape= 0:

Eext(x7 y) — Eexl(o’ O)ei(k,\-x+kyy). (25)

Here the external fieldz<*’ is produced by all sources but the reference inclusion layer. It
includes the field produced by all the other inclusion layers. The averaged surface polarization
(P)(x, y) can be expressed in terms of the total averaged {#)dx, y) on the plane = 0.
In particular, one has the following relation at the origin:
(P)(0) = B'(ky) - (E)(0,0). (26)
It can be shown easily th§t/(kx) in the above relation is identical tzb(kx) in equation (15).
The periodicity of the grid then leads to the following expression for the dipole mgment
(per unit length) of then, m)-numbered cylinder (centred at the paing= nl,, y = ml,, z =
0) on the plane = 0:

p(x =nl., y = mly) = p(0, 0)e™ bl 27)

where the 0-numbered cylinder is centred at the origin (i.e y = z = 0). Note that the
fields considered later are either at the origin or on the plaad, unless specified otherwise.
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Consider the doubly periodic grid excited by the wave (25). Assume that the polarizability
@ is known for the inclusions, and we have

p(0,0) =@ - E'°°(0, 0) (28)

where the local fieldg'*c(0, 0) is the field applied to the reference inclusion (centred at the
origin) from all theother sources. The local fiel&¢ can be written in the following two
parts:

E'"¢(0,0) = E™ (0, 0) + E'(0, 0) (29)

whereE™ is called the interaction field, i.e. the field produced at the origin by all the inclusions
except the reference inclusion centred at the origin. We assume that the external field at the
origin is produced by sources far from the reference cylinder, and thus practically equals the
averaged external field at the same point, i.e.,

E*(0,0) = (E*')(0, 0). (30)

To ensure the validity of the approximation (30) we have already chosepakis to be along

the direction with the longest period (so that the inclusions at other inclusion layers have a
larger distance from the reference cylinder than the neighbouring inclusions at the piaije

The external fieldE“*" may be written in the following form:

Eext — (E) _ (Egrid> (31)

where (E) is the total averaged field andzs"’?) is the contribution of all inclusions at the
reference plane = 0 to the averaged field.

Since both the external field and the distribution of the polarization are periodic functions
(cf. equations (25) and (27)), one can express the interaction field in terms of the so-called

interaction tensoA (k) (introduced by Collin in [19] for dipolar lattices):
E"(0,0) = A(k) - p(0, 0). (32)

An explicit expression foﬁ(k) in a special case can be found in e.g. [19] (page 784). A
similar relation resulting from the periodicity of the fields can be written for the averaged grid
field:

(E#"i4)(0,0) = B(k, L. 1) - p(0, 0). (33)

We derive the explicit expressions farandB in a special case in the appendix.
Now assume thad andB are already known. Substituting equations (29), (31), (32) and
(33) into equation (28) and using the fact ti&) (0, 0) = p(0, 0)/I,1,, one obtains
1
1.l

+3-B)1.T- (E)Q©,0) (34)

|l

TI-T-

(P)(0,0) =

=

which gives the following explicit expression for the susceptibility maﬁ(kz):

1
L1,

Rl

)t

LIl
Gl

T—T-A+

=l

~

(35)

whereT is the unit dyadic.
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4. Numerical verification for a special case:H-polarization of the 2D case

In this section we verify our method numerically for a special case, namel¥] thelarization
of the two-dimensional case. In the two-dimensional model, the inclusions are uniform
along they-direction and all the fields are independentyof We consider the case @f-
polarization, i.e., the magnetic field is perpendicular toithlane (the electric field has
andz-components).

Then the averaging operator and Fourier transformation (2) are redefined to ekclude

andk, in the definitions (1) and (2). For such a cagés a 2x 2 matrix which containgx,

xz, zx andzz elements. The zero determinant of the system of equations (13), (14), (19) and
(20) leads to the following explicit dispersion equation (note that w. /€, 1):

0 sin\/(a» fepml)?2 — (k1)2 = cos\/(aA fepl)? — (k.1)? — cosk,l (36)

where

_ —2ikol/i/ey /“/E”<Ml— [(kol)z_(kxl)z]s/zMz)/<4+MMlM2>

V(koD)? = (k)2 ko we),
(37)
and whereM; and M, are given by
. ky
M, = |w<ﬁxx - ﬁxz2—> (38)
kg — k2
ky ky
M2 = _|_<,Bzx - ﬂzz—>- (39)
€p

N

Equations (37), (38) and (39) for the symmetric case whenr= 8,, = 0 can easily be derived
Eom the relationS; 1522 — 812521 = 0, which follows from equations (23) and (24) (the tensors

E-j become scalar in the 2D case).

Note that the dimensionless dispersion coefficiénis real when the inclusions are
lossless. Also note that in gener@l depends on the frequency, the dielectric parameters,
the shape of the inclusions and the lattice parameters. The varkalaladk, in the dispersion
relation (36) determine the propagation direction. For normal propagationk(i.es 0),
equation (36) has a form similar to the well-known dispersion equation for the inductively
loaded transmission line (whe@ is independent of the frequency) [20]. It is also similar to
the approximate dispersion relation for electron propagation in an ‘empty lattice’ when the
electron energy exceeds the periodic potential barriers [21].

The matrixg depends on the shape of the inclusions. One can derive explicit expressions
for B for inclusions with various special shapes. For inclusions of circular cylinders (with
radiusa = d/2 and permittivitye,), one can obtain the following explicit expression for
(see the appendix for a detailed derivation):
_ 2ndPep €4 —€p
CL(1-9%) et

2na’e, €, — €

= ——— 41
P = =) cve “1)

ﬂxz = .Bzx =0 (42)

B (40)
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where
n(w/epna)? e, — €, _ ,
S = Y 1) sin(k L) + k%1, 43
oJenly €, te [ 1(w/epuly) sin(kyly) + kil /(@ /Gbu_)] (43)
Ta €; — €
Y= 44
le Ga + Gb ( )

and whereY; is the Neumann function of order 1. As shown in the appendix, the explicit
expressions (40) and (41) fgt,, and B,. are quite accurate whety < 27/, and the
dispersion relation for the complementary cage- 27/, can be described approximately as

that for the homogeneous background medium. Note that the photonic band gap usually occurs
at several low bands, and thus the explicit formulae for the band structure in the low-frequency
regionkg < 2m/1, are particularly interesting and useful. It thus follows from equations (38),
(39), (37)-(42) that the dispersion coefficiegt for the caséq < 27/l, has the following
expression for circular inclusions:

0= ghi(w/Eul)*  (1=98) — (1= 8)(k)?[(w /EGul)? — (kD)% (w /Eul)*
L Jend)? = (k)2 (1-8A =8+ (kl)?g

(45)
where
_ wa(e, — €p)
e te)

4.1. Numerical verification

In order to verify the analytic results obtained from our averaged-field approach, we compare
the band structure obtained with our explicit formulae with the one computed by the
conventional plane-wave expansion method [9]. As a simple numerical example, we choose
€, = 100, €, = €0, I,/1 = 0.15 and the radius = 0.25, for the circular cylinders. In this

case theirreducible Brillouin zone is a triangular wedge, and the rest of the Brillouin zone can be
related to this triangular wedge by rotational symmetry. Therefore, we have three special points,
I', X and M corresponding respectivelykp = 0, ky = (w/l)z andk; = (7/1)2 + (n/ ) Z.

In figures 2(a) and 2(b), the solid curves are the band structure obtained by the conventional
plane-wave expansion method [9] (with 441 plane waves), and the circles are obtained from our
explicit dispersion relation (36) wit® given by the approximation (45). As one can see from
figure 2(a), our results give a good agreement with the results obtained by the conventional
plane-wave expansion method. The dashed curves in figure 2(b) give the corresponding band
structure (for a normal propagation) for the homogeneous background medium (i.e. there
is no inclusion). Figure 2(b) indicates that our method has taken into account the inclusion
information in a correct way. The comparison given in figures 2(a) and 2(b) verifies the present
method. Our method is over 70 times faster than the plane-wave expansion method in terms
of the required computational time.

5. Conclusions

An averaged-field approach has been suggested for obtaining the band structure of a photonic
crystal when the dimension of the inclusions is small compared with the longest period of the
rectangular lattice. The method allows one to obtain an explicit dispersion equation for a three-
or two-dimensional photonic crystal. The band structure is obtained in an explicit and simple
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1.8f
a
o (@)
1.4+
1.2}
B it
AN
= r
@ 0.8
0.6} Ky
A M
0.4
kz
r X =
0.2 PW exp. 1
o Our method
M r X M
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1.3¢ -
1.2}
E 1.1
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=
3 1}
0.9F
| PW exp.
0.8 o Our method
» homogeneous
r X

Figure 2. The band structure for a 2D photonic crystal with= 100, ¢, = €p, [ /! = 0.15 and
radiusa = 0.25., for the circular cylinders. The circles are obtained by our results, and the solid
curves are obtained by the conventional plane-wave expansion method (with 289 plane waves).
The dashed lines in (b) give the corresponding band structure (for a normal propagation) for the
homogeneous background medium (i.e. there is no inclusion).

way. The method has been verified numerically by comparing with the conventional plane-
wave expansion method for thié-polarization of the two-dimensional case. The present
method can be generalized to the more complicated cases such as the case of anisotropic
inclusions, etc.

Besides the resulting simple and explicit formulae, the present method has many other
advantages such as that it can treat the case when the inclusions are perfectly conducting
(results are presented in [25]). However, the conventional plane-wave expansion method will
be complicated to apply to this case. Note that all the formulae in the present paper also hold
when the permittivity of the inclusions is frequency dependent (as long as the permittivity is
positive) and the band structure can be computed from our explicit dispersion relation in a
straightforward way (the plane-wave expansion method, however, works only for some very
special types of frequency dependence after complicated modifications [22]).
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Appendix. Derivation for E for the case when the inclusions are circular cylinders

The off-diagonal elements of the matrixvanish if the cross-section of the centre cylinder
is symmetric with respect to the plape= 0 and each inclusion cylinder is treated as a line
dipole with the dipole moment per unit length denotedpby

For circular inclusions (with radiug), one has the following relation betweg0) and
the local fieldE'¢ [23]:
€, — €p

p(0) = 2na%e, E'°. (A1)
€, T €
Thus, the polarization coefficient(defined by equation (28)) is given by
o = 27T[12€b Ca . (AZ)
€, T €

In the two-dimensional case, equation (34) reduces to the following relation (note that
<Px,z>(0) = px,z(o)/lx):

o
<Px,z> = L (1— anﬁz T Ofo,z) (Ex,z>- (A3)
Therefore, one has (cf. equation (15))
o
P = Iy [1 —a(A, — Bx)] (A4)
o
B = (AS)

L[1-a(A; - B)]
To find the expressions fot, ; and B, ;, we consider separately the low-frequency case
ko < 2 /1, and the high-frequency cagg > 27 /[, and we start with the former.
To find the expressions fot, andB,, we consider an array of discrete equivalent dipoles
(polarized in thex-direction) located at the centres of the cylinder inclusions. Thus, the
parameterd, can be found from the following relation [24]:

-1 00
B =400 = (3 +3 )60l 0,0 (6)

n=—00 n=1
whereG (x, z) is Green'’s function describing the electric field at the origin generated by a unit
line dipolar at the poingx, z). On the plane = 0 one has [24]

—i H (kolx])
4ep x|

We replace the summation in equation (A6) by an integration (as an approximation) using the
well-known Euler formula wheky < 27/1,. One then obtains

—1,/2 o0 )
pin = 2x© +[ )G, 0gh dx. (A8)
* Iy —oo 1,/2

We consider the interaction field to be the field produced by a continuous polarization
distribution in the regions > [,/2 andx < —I,/2, and this polarizatioq P:"**""}(x) is
given by

G(x,0) = (A7)

(Pmoothy (x) = p (05 /1, (A9)
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Note that the exact expression for the averaged polarizafigns (P, )(x) = p,(0)&&" /1,

wherex € [(n — 1/2)l,, (n + 1/2)l,] andn = 0, +1, £2, .. .. Relation (A9) comes from the

smoothing of this exact expression. The funct@ox, 0) can be expressed in terms of the

second:-derivative of H" (koR) atz = O:
—i 2

9
Gx,00 = —— — HY (koR
(.0 = g S5 H? hoR)

z=0

Since the Hankel functiomlél)(koR) satisfies the Helmholtz equation, it then follows from

equation (A8) that
gt = 12O (12 o /_lx/2+/Oo &4 B (kolx — x'|) dlx’ (A10)
* depkol, 0 dx?2 x=0 \J -0 I/2 ° ’ ‘

Using integration by parts, one can derive the following explicit expressiomfofrom
equation (A10):

N ki
A= YR B gl sindhud) + K2 ko (A1)
N

wherey,, is the Neumann function of ordet

In a similar way we can derive the expression for the paranitén the low-frequency
case wherty < 27 /1,. We use the theorem proved in [16] that the averaged field generated
by discrete dipoles is equal to the field generated by the averaged dipole distribution, i.e.,
(E)(P) = E({P)). Instead of the exact representation {&t), we use its smoothed approx-
imation (A9). Using the well-known formula for the electric field produced by an infinite sheet
of harmonic dipole polarization (see e.g. [23] and [24]), one obtains

B = — 2K (A12)

2, /k3 — k2

Thus, substituting equations (A11) and (A12) into equation (A4), one obtains the final
expression (40) foB,, with § given by equation (43).

Now we derive the expressions far andB,. We consider an array of discrete equivalent
dipoles (polarized in the-direction) located at the centres of the cylinder inclusions. We study
the interaction fieldz!"" and the averaged grid fieldz$" ™y at the origin in a way similar to
the one used in the derivation fdr, and B,. Using the corresponding relation (11) for the
bulk polarization and the bulk current density, equations)38%) in [24] and the formula
(pb%y = (P;)/d, one obtains the following expression for the field incremefit dt the
origin produced by the polarization current on a small strip elememtrdthe planeg = 0 (a
distancd x| away from the origin):

i €pw ;
dE; = %<pz<0>/lx>e"‘xxH{”(kopc|) dx. (A13)
Integrating the above#d,, one obtains
) —1,/2 00
E;’” = Al (P;)(0) = (/ +/ > dE.. (A14)
—00 1,/2

To find the averaged grid fieldz#"“), we cannot integrate (A13) over allon the plane = 0,
since this representation implies that the bulk polarization distribution has a delta-fuhetion
form and equation (A13) cannot be used to describe the field-ipaarized strip generated by
itself [24]. Thus we separate the plane= O (with a smoothed surface polarizatioh,) (x))
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into two regions, namely, the closest regia < xo and the far regiofx| > xo (we choose

the valuexg such that 2 < xg < I, /2 andkoxo < 1). When evaluating the contribution from

the region|x| < xo to (E¥"'/), denoted by E¢'s*s'), we may neglect the phase shift of the
waves and hence it behaves like a static field. Sikyce 24, the two domaing > xg and

x < —xg are far enough away from the origin and we can assume that the field is generated by
a delta-polarizatiorip?“*) (x, z) = (P.)(x)3(z)/d. It then follows from equation (A13) that

<E§rid> = lex<Pz>(O) — <EZClOseS[> " (/XO +/OO) dEZ (Als)

The field(ES'>*") is the electrostatic field on the dipole layer which is infinite alongtizeis

and has afinite sizex@dx d on thexz-plane. Thisfield (due to the effect of bound charges) can be
treated as the field inside an equivalent capacitor with the surface ehasgg”/*) = (P.)/d.

This equivalent capacitor is formed by two infinite strips with the same transverse size. We
suggest choosingy = d. It then follows that( ES'***") = (p’“/k) /2¢, = (P,)/2¢,d. For the
integral term in equation (A15), the contribution from the parts [,/2 andx < —[,/2 to

B, cancels out with,; (given by equation (A14)). It thus follows from equation (A13) that

1 i«/,LL/Eba) \/l‘/z @
A.— B, = — cos(k,x)H,” (kox) dx. Al6
z z 2dl. €, 21? , (kyx) 1 (kox) dx ( )

An analytic estimation shows that the integral term in the above equation is very small compared

to the first term. Thus one has the following approximation:
1

4611)(61, ’

Substituting the above expression into equation (A5), one obtains the expression (&1) for

with 8’ given by equation (44).

Now consider the high-frequency case,kg> 27 /1,. Then all the cylinders are situated
more than half a wavelength away from the reference cylinder. The averaged field at the origin
generated by the-numbered cylinder{ # 0) on the plane = 0 is approximately equal to
the field at the origin generated by this cylinder, i.e.,

(E" ico = E7_|izo.

A, — B, = (A17)

Since
(E&I) im0 = i (Eid)|
it follows from equations (3;)_;\:d (33) tr;at
B..— A, = = e E® (x) dx
- TopO) S

where E®(x) is the field at the pointx, z = 0) generated by the reference (i.e., 0-numbered)
cylinder. This field cannot be treated as the field generated by a line dipole source, since we
have to take in account the near-field structure in the closest region. The expression for the
field generated by a uniformly polarized cylinder with a finite cross-section is given in [24].
Using the exact expression f@°(x) we have carried out a quite complicated study for

and 8, for the high frequency case > 2x/l,. However, our study leads to the trivial
result corresponding to the homogeneous background medium. If the frequency is so high
thatkol, > 27 andkoa < 1 (the condition required for the present ‘thin-layer’ treatment),
the polarized cylinders give an insignificant scattered field. The dispersion curves calculated
with our complicated high-frequency formulae for this case give an almost linear frequency
dependence of the propagation constant (as for the homogeneous background medium).



112

S Heetal

References

(1]
(2]

(3]
(4]
5]
(6]
[7]
(8]
&l
(10]
(11]
(12]
(13]
(14]
[15]
[16]
(17]
(18]
(19]
[20]
(21]
[22]
(23]
[24]
(25]

Yablonovitch E 1987Phys. Rev. Let68 2059

Joannopoulos J D, MeR D and Winn J N 199Photonic Crystals: Molding the Flow of LigliPrinceton, NJ:
Princeton University Press)

Soukouls C M (ed) 199Froc. NATO ARW on Photonic Band Gaps and Localizatidew York: Plenum)

Joannopoulos J D, VilleneeP R and Fan S 19%Nature386143

John S 198Phys. Rev. Letb82486

Yablonovitch E, Gmitte T J and Bhat R 1988hys. Rev. Let61 2546

Kurizki G and Genak A Z 1988Phys. Rev. Letb61 2569

Knight J C, Birks T A, Russell P St J and AtkD M 19960pt. Lett.21 1547

Plihal M and Maradudi A A 1991 Phys. ReB 44 8565

Satpathy S, Zhang Z and Salehp®iR 1990Phys. Rev. Let64 1239

Leurg K M and Liu Y F 1990Phys. Rev. Let65 2646

Ho KM, Chan C T and Soukoudi C M 1990Phys. Rev. Let65 3152

Sodler H S, Haus J W and Inguva R 19PRys. RevB 4513 962

McPhedra R C and Dawes D H 1992 Electromagn. Waves Apji 1327

Chin S K, Nicorovié N A and McPhedra R C 1994Phys. RevE 494590

Kontorovich M | et al 1987Electrodynamics of Grid Structur¢Moscow: Radio i Swiaz) (in Russian)

Kogelnik H and ShakC V 1972J. Appl. Phys432327

Jacksa J D 1975Classical Electrodynamic2nd edn (New York: Wiley)

Collin R E 1991Field Theory of Guided Wave@ew York: IEEE Press)

Collin R E 1992Foundations for Microwave Engineerirfjew York: McGraw-Hill)

Tanne B K 1995Introduction to the Physics of Electrons in Solighew York: Cambridge University Press)

Kuzmiak V, Maradudi A A and Pincemin F 199RPhys. Re\B 50 16 835

Wait J R 1985Radiation and Scattering of Wav@dew York: Harpers and Row)

Felsen L B and Marcuvits N 197Radiation and Scattering of Wavésnglewood Cliffs, NJ: Prentice-Hall)

Simovski C, Qiu M and He S 1999 Electromagn. Wave Appat press



